The four potential colour and shape combinations emerged in the ratio of 9:3:3:1, indicating that the genes for the two pairs of characteristics were randomly distributed into the gametes.
Independent events indicate that 3/4 x 3/4 = 9/16 will be both yellow and round if you have 3/4 yellow and 3/4 round. The proportions of the remaining three combinations may be determined in the same way.
Mendel observed 9 yellow rounds: 3 yellow wrinkles: 3 green round: 1 green wrinkled peas.
After the discovery of chromosomes and their activity during meiosis, it was feasible to explain the autonomous assortment as a result of each pair of homologous chromosomes moving independently during meiosis. It’s crucial to have a diverse set of genes in order to create novel genetic combinations that promote genetic diversity within a population.
Mendel’s breeding of pea plants with diverse features, such as garden pea plants that produce wrinkled green peas and another garden pea plant that produces rounder yellow peas, led to the discovery of the law of independent assortment. Because yellow and round characteristics were more prevalent, all of the first generation’s progeny were yellow and rounded peas. After mating the first generation with each other, the second generation exhibited significant variance. In yellow and green peas, the experiment demonstrated the separate inheritance of homologous characteristics on distinct alleles, since the generated offspring were not just yellow and round or green and wrinkled like their parents.
What is an independent assortment?
Let’s say you’re tracking two features in a random population of cats: eye colour (brown or green) and hair colour (white or grey). Brown eyes (B) are the dominant allele for eye colour, whereas green eyes (G) are the recessive allele (b). Let’s assume the white fur (W) allele is dominant over the grey fur (G) allele when it comes to fur colour (w).
At sexual maturity, heterozygous cats with dominant features, such as brown eyes and white fur, will generate gametes. If we follow the law of segregation, the alleles for eye colour will be sorted separately from the alleles for fur colour during gamete formation.
After meiosis, the resultant gamete will include random alleles, resulting in offspring with mixed characteristics if two heterozygous cats are crossed. For example, one of the kittens may have brown eyes (BB or Bb) and grey hair (ww). Another kitten could have grey hair and green eyes (bb) (ww). Others may have brown eyes and white fur as well (thus, possible genotypes could be BBWW, BBWw, BbWW, BbWw).
This is simply a hypothetical scenario. The eye and fur colour characteristics are polygenic in nature, which means that multiple alleles are involved in determining the offspring’s phenotype. The activity of chromosomes during meiosis and the random movement of each homologous pair of chromosomes during meiosis are currently used to explain the independent assortment.
Independent assortment is a critical step in the creation of novel genetic combinations that add to the genetic diversity of sexually reproducing people.