A population will expand exponentially as long as the environment to which all people in that population are exposed remains constant, according to the law of population growth. As a result, assuming environmental circumstances remain unchanged, the population is anticipated to increase. However, there will come a moment when the population outnumbers the environment’s capacity to support it. This is referred to as the carrying capacity, or the environment’s maximum load.
The carrying capacity of an ecosystem refers to the number of people it can support without causing harm or devastation to the organisms or the environment. As a result, population growth may continue until carrying capacity is reached. The population will ultimately shrink if it exceeds this limit. Carrying capacity is determined by limiting variables. Food, water, habitat, and mate are all typical limiting variables in ecosystems. The presence of these elements will have an impact on the environment’s carrying capacity.
As the world’s population grows, so does the need for food. Due to the scarcity of food, organisms will begin to compete for it. The same may be said for nutrients, space, and partners. Because these resources are only accessible for a short time, residents of a given ecosystem will compete, perhaps against other species of the same species (intraspecific competition), or against other groups of species (extraspecific competition) (interspecific competition).
Another common symbiosis in the environment is the predator-prey interaction. If predation is excessive, deer numbers, for example, may suffer. If the number of wolves is larger than the number of deer that they hunt, the deer population may decline. However, as the quantity of deer decreases, the number of wolves may also decrease. In an ecosystem, this predator-prey relationship is an example of a biotic factor.
Abiotic factors comprise the different physico-chemical elements in an ecosystem, and biotic factors include the actions of a biological component of an ecosystem. Sunlight, humidity, temperature, the atmosphere, soil, land geology, and water resources are all examples of physico-chemical variables. Temperature, for example, is a key limiting factor because it influences the efficacy of enzymes and catalysts, which are critical components of an efficient biological and chemical system.